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We study networks of interacting oscillators, driven at the boundary by heat
baths at possibly different temperatures. A set of first elementary questions are
discussed concerning the uniqueness of a stationary possibly Gibbsian density
and the nature of the entropy production and the local heat currents. We also
derive a Carnot efficiency relation for the work that can be extracted from the
heat engine.
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1. THE MODEL AND RESULTS

Consider a finite connected graph G=(V, ’) with vertex set V. Two
vertices (=sites) i ] j ¥ V are called nearest neighbors if there is an edge
between them: i ’ j. Every site i ¥ V carries a momentum and position
coordinate (pi, qi) ¥ R2. Generalizations to higher dimensional coordinate
vectors are straightforward. We select a non-empty subset “V … V, called
boundary sites, that, below, will be imagined connected to thermal baths at
possibly different temperatures. States (p, q) are elements ((pi, qi), i ¥ V)
¥ R2 |V| and r will denote a probability density (with respect to dp dq=
<i dpi dqi) on it.

The coupling between the degrees of freedom is modeled by the
Hamiltonian

H(p, q)= C
i ¥ V

p2
i

2
+U(q) (1.1)



with a symmetric nearest neighbor potential

U(q)=C
i

Ui(qi)+C
i ’ j

l ijF(qi − qj) (1.2)

where l ij=lji ] 0 whenever i ’ j and F is even.

1.1. Hamiltonian Dynamics

The above mechanical system of coupled oscillators has a time-evolu-
tion given by Newton’s equations of motion,

dqi=pi dt,

dpi=−
“U
“qi

(q) dt, i ¥ V
(1.3)

which is well-defined under standard conditions on the Ui and F. We
assume that these are infinitely differentiable and such that (1.3) yields
existence of uniquely defined global solutions with Hamiltonian flow gen-
erated by the Liouville operator

LH — p · Nq − NqU · Np (1.4)

where the dot product is a sum over i ¥ V.
The Gibbs measures with densities

rb(p, q) —
1
Z

e−bH(p, q) (1.5)

at inverse temperatures b > 0 are stationary under (1.3) assuming nor-
malizability. They are however much more than that: they satisfy the Kubo–
Martin–Schwinger (KMS) conditions

F
“f
“qi

r(p, q) dp dq=b F f
“H
“qi

r(p, q) dp dq,

F
“f
“pi

r(p, q) dp dq=b F f
“H
“pi

r(p, q) dp dq

(1.6)
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for smooth functions f, for all i ¥ V. Obviously, stationarity of r does not
imply (1.6) and it has been a widely discussed question what kind of further
regularity conditions, beyond stationarity under (1.3), must be imposed on
densities r so that r=rb is a Gibbs measure (1.5). Often, and this is some-
times more efficient for infinite Hamiltonian systems, a noise or stochastic
dynamics is added to (1.3) so that the randomized evolution makes all suf-
ficiently regular stationary measures Gibbsian, see e.g., ref. 4 for an intro-
duction. This randomization is usually of a bulk nature in the sense that it
affects the whole volume of the system. Our first question takes a some-
what different approach. We ask whether stationarity together with the
KMS-conditions (1.6) but only for i ¥ “V, suffice to make r=rb. More
generally, we impose

F
“f
“pi

r(p, q) dp dq=bi F f pi r(p, q) dp dq, i ¥ “V (1.7)

for all smooth f, where the bi > 0 are thought of as the inverse tempera-
tures of reservoirs connected to the i ¥ “V. A further motivation for this
question comes from the heat bath dynamics that will be introduced below;
there, the equations (1.7) at the boundary sites are equivalent with having
zero entropy production (as will be explained in Section 3.3). Related to
this, we observe that (1.7) implies

F p2
i r(p, q) dp dq=

1
bi

, i ¥ “V

which says that the kinetic temperature at the boundary sites must be equal
to the imagined corresponding reservoir temperatures. No matter how at
the boundary the coupling with the reservoirs is actually performed, (1.7)
thus implies that there is no net energy current into the reservoirs, hence a
vanishing mean entropy production.

Question 1. Is it possible to find a density r that is stationary under
(1.3) and that satisfies (1.7)?

Answer 1. In general: no, when bi ] bj for some i, j ¥ “V. If all
bi=b, further graph-dependent conditions on the potentials Ui and F can
ensure that there is such a unique r=rb but it is very well possible to have
still another solution r.

This question and answer will be put more precisely in Section 2.
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1.2. Heat Bath Dynamics

In this case the dynamics is Hamiltonian except at the boundary “V
where the interaction with the reservoirs has the form of Langevin forces as
expressed by the Itô stochastic differential equations

dqi=pi dt, i ¥ V

dpi=−
“U
“qi

(q) dt, i ¥ V0“V

dpi=−
“U
“qi

(q) dt − cpi+=2c

bi
dWi(t), i ¥ “V

(1.8)

The bi are the inverse temperatures of the heat baths coupled to the
boundary sites i ¥ “V; Wi(t) are mutually independent, one-dimensional
Wiener processes.

Again, standard conditions on the potentials allow the existence of the
corresponding Markov diffusion process with a strongly continuous semi-
group generated by

L — LH − c C
i ¥ “V

pi
“

“pi
+ C

i ¥ “V

c

bi

“
2

“p2
i

(1.9)

The Gibbs measure (1.5) is (generalized) reversible for the process when-
ever bi=b, i ¥ “V (also called, reversible in the Yaglom sense), in which
case Lg=pLp on L2(rb). Here, the kinematical time-reversal p is given
by the involution defined as: pf(p, q)=f(−p, q). The question of unique-
ness and mixing properties of a stationary density r has been discussed in
refs. 1, 2, and 12 at least for G a one-dimensional lattice interval. Here we
ask

Question 2. Is it possible that more than one smooth stationary
density r exists?

Answer 2. Yes, depending on the graph and even for all bi=b and
for nicely behaving interaction potentials, more than one such r may exist.

This will be taken up at the end of Section 3.
The rest of the questions have to do with the nonequilibrium problem

where the temperatures of the reservoirs are different. Then, we expect to
have heat currents in the system and positive entropy production. The first
elementary question is therefore
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Question 3. Suppose that r is a smooth and stationary density with
mean entropy production rate Ṡ(r). Is Ṡ(r) > 0 when some bi ] bj ?

Answer 3. Yes, quite generally. Nevertheless, depending on the
complexity of the graph, we will need further conditions on the potential to
prove the strict positivity.

We will start the discussion around entropy production in Section 3.
Related to that is the following

Question 4. Does Ṡ(r)=0 imply that all local heat currents in the
system are zero, and if some bi ] bj, what is then the direction of the heat
currents?

Answer 4. We prove that if there is a unique smooth stationary
density, then vanishing entropy production implies that all local heat
currents are zero. Only for the simplest graphs, we can prove that the
direction of the heat currents is as expected from thermodynamics.

Question 4 becomes easier in the linear regime (where the differences
between the bi are assumed to be very small). This raises the question in
what sense the minimum entropy production principle can characterize the
stationary density up to linear order. We will see, also in Section 3, that
this principle cannot be applied here.

Finally, in Section 4, we compute the maximal efficiency of our
system. We couple the system to an external world on which it can exert
forces. The efficiency is the ratio of the net work output to the energy input
and we give an upper bound in terms of temperature differences as appears
in the treatment of the Carnot engine.

1.3. Background

The above heat bath dynamics is not a microscopic dynamics but it
results from a Markov approximation for the evolution of a small sub-
system of oscillators coupled to large reservoirs. Derivations of such
dynamics from first principles have been discussed in refs. 3 and 6 and
more recently in refs. 1 and 2. We would like to draw the attention to the
even more recent ref. 9 where the general philosophy is discussed on a
mathematically elementary level. The nonequilibrium harmonic crystal was
first solved in refs. 10 and 13.

2. KMS-CONDITIONS AT THE BOUNDARY

Here we study Question 1 and we are in the framework of Hamilto-
nian dynamics.
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2.1. Propagation of KMS Conditions

We first introduce the notion of non-degeneracy of real functions. It
depends on an integer n and later on it will be applied to the second deri-
vative of the pair potential F.

Definition 2.1. We say that a function f: R W R is n-non-degen-
erate whenever the set

Un={(q1,..., qn) ¥ Rn : ,(q −

1,..., q −

n) ¥ Rn : det f(q −

i − qj) ] 0} (2.1)

is dense in Rn. Here, det f(q −

i − qj) is the determinant of the n × n matrix
with elements f(q −

i − qj).

Every real function f – 0 is obviously 1-non-degenerate and all even
real continuous functions are 2-non-degenerate. One can also verify that all
polynomials of degree r are n-non-degenerate if and only if r \ n − 1. Here
is a further characterization:

Proposition 2.2. Suppose we can write

f(qŒ − q)= C
.

m=0
bm(q) fm(qŒ)

absolutely convergent, where the {fm} are such that there is a non-empty
set B … R for which,

if C
m

lmfm(qŒ)=0 for all qŒ ¥ B, then lm=0 for all m

If there are n different functions bm1
,..., bmn

for which the matrix (bmi
(qj))

has a non-vanishing determinant, det bmi
(qj) ] 0, for all (q1,..., qn) in a

dense set of Rn, then f is n-non-degenerate.

Proof. By writing out the determinant as a sum over permutations,
one can easily see that

det f(q −

i − qj)= C
m1,..., mn

det bmi
(qj) D

n

k=1
fmk

(q −

k)

Hence, from the hypothesis on the functions fm, if for all (q −

1,..., q −

n) ¥ Bn,
det f(q −

i − qj)=0, then the (q1,..., qn) are such that det bmi
(qj)=0 for all

possible choices m1,..., mn. Alternatively, if there exists a choice bm1
,..., bmn

so that det bmi
(qj) ] 0, then there must be (q −

1,..., q −

n) ¥ Bn with det f(q −

i − qj)
] 0. L
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The following example helps to make the above proposition more
explicit: for f(q)=aq2+b, we have f(qŒ − q)=b0(q)+b1(q) qŒ+b2(q) qŒ

2

for b0(q) — aq2+b, b1(q) — − 2aq, b2(q) — a. To check the n=2-non-degen-
eracy, it suffices to observe that for the choice m1=1, m2=2 the determi-
nant b2(q2) b1(q1) − b2(q1) b1(q2)=2a2(q1 − q2) is non-zero (when a ] 0) on
the dense set q1 ] q2.

Our first result of this section demonstrates how the boundary KMS
conditions propagate to other sites provided that the pair potential is n-non-
degenerate for n high enough. We start with some notation. The number of
sites in a subset A … V is denoted by |A|. Given j ¥ A, we introduce the set

N(j | A)={v ¥ V0A; v ’ j} . (2.2)

Given a set of sites A and a site i ¥ V0A, we use the notation i ’
n A when-

ever there is a j ¥ A such that i ’ j and |N(j | A)|=n.

Proposition 2.3. Fix an integer n and assume that Fœ is n-non-
degenerate. Let a set A … V be given. If there is a smooth density r > 0
which is invariant under the Hamiltonian flow and satisfies the KMS
conditions

“ ln r

“pj
=−bpj (2.3)

for all sites j ¥ A, then also

“ ln r

“pi
=−bpi (2.4)

for every site i ’
n A.

Proof. Writing the density r in the form r=exp(−bH − W), the
invariance under the Hamiltonian flow, {H, r}=0, is equivalent to

p · NqW − NqU · NpW=0 . (2.5)

Similarly, the KMS conditions (2.3) are

“W
“pk

=0, k ¥ A (2.6)

and, differentiating (2.5) with respect to pk, one also gets

“W
“qk

=0, k ¥ A (2.7)
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Since i ’
n A, there is a site j ¥ A such that j ’ i and |N(j | A)|=n. Fixing

such a j and taking the derivative of (2.5) with respect to qj, we get, for all
(p, q),

C
v ¥ N(j | A)

lvjFœ(qv − qj)
“W
“pv

=0 . (2.8)

To solve this equation we use that there are exactly n terms in the above
sum and that “W/“pv does not depend on qj. If {qv}v ¥ N(j | A) ¥ Un with
Un being the same as in Definition 2.1, then there exist n values
q (v)

j , v ¥ N(j | A) for qj which, by substituting them in (2.8), give n linearly
independent homogenous equations. Hence, as i ¥ N(j | A) and W is a
smooth function,

“W
“pi

=0 (2.9)

whenever {qv}v ¥ N(j | A) ¥ Un. Since Un is dense in Rn, the above equality is
actually true for all qv ¥ R, v ¥ N(j | A). L

2.2. Non-Existence of Stationary Density for Unequal Boundary

Temperatures

To state the main result of this section, we first introduce the notion
of the degree of a graph with boundary. It characterizes the complexity of
the graph that will appear in a condition on the pair potential, see
Theorem 2.4.

Let a graph G=(V, ’) with a boundary “V … V be fixed and take a
sequence v1,..., vr of sites from V0“V, r [ |V0“V|. Given an integer n, we
say that this sequence is n-admissible if the following hold true:

(1) v1 ’
m1

“V=“V0, m1 [ n,

(2) v2 ’
m2

“V 2 {v1}=“V1, m2 [ n,

x

(r) vr ’
mr

“V 2 {v1,..., vr − 1}=“Vr − 1, mr [ n, and “Vr={vr} 2 “Vr − 1 is
a connected set.

Moreover, if “Vr=V, we call this sequence complete. The smallest n
such that there exists a n-admissible sequence of the non-boundary sites is
called the degree of the graph G with boundary “V and we use the notation
n(G, “V) for it. Similarly, the smallest n such that there is a complete
n-admissible sequence is the complete degree of the graph G with boundary

1226 Maes et al.



“V and we use the notation n̄(G, “V). In case “V=V, we define n(G, “V)
=n̄(G, “V)=1. In general, an easy upper bound on the (complete) degree
of any graph with boundary is the maximal multiplicity of vertices.

We are now ready to formulate our statement on the existence and
uniqueness of a stationary measure under boundary KMS conditions.

Theorem 2.4. Let the pair potential F be such that Fœ is m-non-
degenerate for all m [ n(G, “V). Then a smooth density r > 0 invariant
under the Hamiltonian flow and satisfying the boundary KMS conditions

“ ln r

“pi
=−bi pi, for all i ¥ “V (2.10)

exists if and only if all the temperatures are equal: bi=b, i ¥ “V. In this
case and on the extra condition that Fœ is m-non-degenerate for all
m [ n̄(G, “V), the density is unique and given by r=rb.

The proof relies on the following simple lemma:

Lemma 2.5. Assume Fœ – 0 and let r > 0 be a smooth density
invariant under the Hamiltonian flow and satisfying (2.10) at two sites i ’ j
with inverse temperatures bi and bj. Then bi=bj.

Proof. Let i ’ j. By the same argument as in the proof of Proposi-
tion 2.2, the invariance under the Hamiltonian flow together with condi-
tions (2.10) at i ’ j imply

“ ln r

“qi
=−bi

“U
“qi

,
“ ln r

“qj
=−bj

“U
“qj

(2.11)

Differentiating further these equations with respect to qj and qi, respec-
tively, we get

(bi − bj) Fœ(qi − qj)=0 (2.12)

for all qi, qj, which proves the statement. L

Proof of Theorem 2.4. According to the assumptions, there is a
sequence v1,..., vr of sites from V0“V such that vk ’

mk
“Vk − 1, mk [ n(G, “V)

for all 1 [ k [ r and “Vr is a connected set; recall the notation “Vk=
“V 2 {v1,..., vk} for k=0,..., r. We will prove by induction that for any
0 [ k [ r the following is true: If A is any maximal connected component
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of “Vk, then all temperatures bi, i ¥ “V 5 A, are equal, bi=b, and the
KMS condition

“ ln r

“pi
=−bi pi (2.13)

is satisfied for all i ¥ A.
Let k=0, first. As “V0=“V, one has for any i, j ¥ “V, i ’ j that

bi=bj due to Lemma 2.5.
Fix an integer K, 1 [ K [ r − 1. Let the hypothesis be true for all

k < K and take k=K, now. Since vK ’
mK

“Vk − 1 with an mK [ n(G, “V), there
is a site v ¥ “VK − 1 such that |N(v | “VK − 1)|=mk. Denote by Av the con-
nected component of “VK − 1 for which v ¥ Av. According to the induction
hypothesis, the KMS conditions with an equal b are satisfied for all i ¥ A.
As Fœ is non-degenerate of order mk, Proposition 2.3 implies the KMS
condition with b to be also true at vK. The proof of the hypothesis is
finished by applying Lemma 2.5. Since “Vr is connected, the first part of the
theorem is proven.

To prove the second part it suffices to realize that the sequence
v1,..., vr may be chosen in such a way that “Vr=V and to use that r=rb is
the only density satisfying the KMS conditions at all sites with the same
temperature b. L

2.3. Examples

To illustrate how Theorem 2.4 can be applied in case of various
graphs, we discuss some examples.

Let G be a linear chain, i.e., V=(v1,..., vk) and v1 ’ v2 ’ · · · ’ vk. If
v1 ¥ “V or vk ¥ “V, then n(G, “V)=n̄(G, “V)=1. In this case, the condi-
tion of non-degeneracy in Theorem 2.4 only requires that F – const. On
the other hand, if, for instance, “V={vj, vjŒ}, 1 < j < jŒ < k, then n(G, “V)
=n̄(G, “V)=2 and the pair potential F is required to be non-quadratic:
Fœ – const. Another instance where both the degree and the complete
degree are equal to 2 is discussed in the next section. We show that the
uniqueness statement fails in this case. Another example with only the
trivial condition on the pair potential F – const is provided by the class
of tree graphs, i.e., the graphs where any two vertices are connected via
exactly one path. Assume G to be such a graph and denote by V1 … V the
set of vertices which have exactly one neighbor (=vertices with multiplicity 1).
If V1 … “V, then indeed n(G, “V)=n̄(G, “V)=1. An example of such a
graph is given in Fig. 1, with the boundary defined by “V={1, 2, 5, 6}.

1228 Maes et al.



Fig. 1. Example of a tree graph if the boundary is formed by the sites 1, 2, 5, and 6.

An interesting class of graphs is obtained by taking subgraphs of the
regular latices Zd. An obvious upper bound on both degrees is then
n(G, “V), n̄(G, “V) [ 2d. Depending on the boundary “V, these degrees
can get smaller. Recall that when “V is a connected set, then n(G, “V)=1.
For the two-dimensional sublattice of Fig. 2 with the boundary “V=
{1, 2,..., 8} one can easily check that n(G, “V)=n̄(G, “V)=1, while in the
case “V={2, 7}, for instance, one finds n(G, “V)=n̄(G, “V)=3. We remark
that a more physical model on a d-dimensional sublatice is obtained by
replacing the scalar position-momentum coordinates (pi, qi) ¥ R2 assigned
to each vertex i ¥ V with the vector coordinates (pi, qi) ¥ R2d. Such a gen-
eralization is quite straightforward and we omit the details.

2.4. Example with Non-Unique Stationary Measure

We continue with Question 1 and look for non-uniqueness of station-
ary densities under the Hamiltonian flow when all temperatures at the
boundary sites in (1.7) are equal. We give one specific counterexample
to show that the condition of non-degeneracy in Theorem 2.4 plays an
important role.

Consider the graph G=(V, ’) defined as follows: V={1, 2, 3, 4},
“V={1, 2}, and 1 ’ 3, 3 ’ 2, 2 ’ 4, 4 ’ 1, see Fig. 3.

Fig. 2. Portion of square lattice; the non-degeneracy condition is trivial if the boundary is
made by the sites 1,..., 8.
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Fig. 3. Example with a non-unique stationary measure.

The self-potential and the pair interaction be purely quadratic:
Ui(qi)=a2q2

i /2 and F(q)=q2/2; take l ij — l > 0. Let the temperatures be
equal, b1=b2=b, and consider the family of probability densities rc=
exp(−Wc)/Zc parameterized by c > − 1/2 (to allow normalizability) such
that

Wc(p, q) — bH(p, q)+
cb

2
[(p3 − p4)2+(a2+2l)(q3 − q4)2] (2.14)

The remarkable thing is that Wc − bH is a conserved quantity of the
Hamiltonian dynamics even though it does not depend on all the coordi-
nates of the system, {Wc, H}=0. Since, trivially, the boundary KMS con-
ditions (1.7) are verified, we thus have here a family of densities all differ-
ent from the Gibbsian rb, which are also invariant under the Hamiltonian
flow and that satisfy the KMS conditions at the boundaries of the graph.
This non-uniqueness of a stationary measure is not surprising, however, as
one checks by a suitable canonical transformation that the Hamiltonian of
the model decouples into the sum of two independent parts. Notice also
that these rc are not invariant under exchanging the momenta but they are
invariant under a global sign reversal of the momenta, rcp(p, q)=rc(p, q).
This is not possible in infinite volume, see refs. 4 and 5. It is known that
harmonic oscillators can have besides Gibbsian, additional regular sta-
tionary measures, see e.g., ref. 14. On the other hand, we do not believe
that the quadratic nature of the potential is crucial; for other graphs,
examples of non-uniqueness can probably also be obtained for coupled
anharmonic oscillators.

3. ENTROPY PRODUCTION AND HEAT CURRENTS

We now move to the case of heat bath dynamics and we must first
introduce what is needed for Questions 3 and 4.

At each boundary site i ¥ “V, we introduce the heat current into the
corresponding heat bath as minus the work performed on the system by
Langevin forces acting at the site. If w=((q(t), p(t)), t ¥ [− y, y]) denotes
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the evolution of the system in the lapse of time [− y, y], then the time-
integrated boundary current at i is defined as

Jy
i (w) — F

y

−y

5cp2
i (t) dt −=2c

bi
pi(t) p dWi(t)6 (3.1)

where the ‘‘p’’ stresses the Stratonovich integration. The above definition
relates the boundary currents Jy

i , i ¥ “V to the random trajectory w. The
realization Wi(t) of the Wiener process appearing in (3.1) is determined
uniquely by the equations of motion (1.8) (up to a redundant constant),
once w=((q(t), p(t)), t ¥ [− y, y]) is given. A global energy conservation
statement follows from (1.8):

H(wy) − H(w−y)=− C
i ¥ “V

Jy
i (w) (3.2)

Consider the decomposition H=;i Hi of the Hamiltonian (1.1) into local
versions

Hi(q, p) — 1
2 p2

i +Ui(qi)+1
2 C

j: j ’ i
l ijF(qi − qj) (3.3)

which should be interpreted as the energy stored at site i ¥ V. After defining
local time-integrated currents Jy

ij=−Jy
ji by Jy

ij(w) — >y
−y Jij(q(t), p(t)) dt

where

Jij(q, p) — 1
2 l ij(pi+pj) FŒ(qi − qj) (3.4)

we obtain the next local version of the energy conservation:

Hi(wy) − Hi(w−y)=−Jy
i (w) − C

j: j ’ i
Jy

ij(w) (3.5)

where the first term on the right-hand side is to be omitted whenever
i ¨ “V. The conservation laws (3.2) and (3.5) have a number of implications
for the steady state. Steady state expectations will be denoted by brackets
and we will take for granted that it has a smooth stationary probability
density r=exp[− W]: if f depends on the state (pt, qt) at a single time, then

OfP=F dp dq f(p, q) r(p, q)

This is a non-trivial mathematical assumption but it is supported by the
analysis of refs. 1, 2, 11, and 12 to which we refer for details. In the steady
state regime, one has OJy

iP=;j: j ’ i OJy
jiP and ;i OJy

iP=0.
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Since OLHiP=0, we have

C
j: j ’ i

OJjiP=c 1Op2
i P−

1
bi

2 , i ¥ “V (3.6)

or

1
2y

OJy
iP=c 1Op2

i P−
1
bi

2 , i ¥ “V (3.7)

The total entropy production of the system plus reservoirs is the sum
of the change of entropy in the system and the change of entropy in the
reservoirs. From the point of view of the system, the change of entropy in
the reservoirs corresponds to the entropy current JS, that is the energy dis-
sipated in the environment per unit time divided by the temperature of the
reservoirs: in the steady state

JS=
1
2y

C
i ¥ “V

biOJy
iP (3.8)

and the entropy of the system does not change, Hence, the total steady
state entropy production equals (3.8). We can see from (3.7) that it is zero
when the kinetic temperatures Op2

i P=1/bi, i ¥ “V as announced following
(1.7).

3.1. Statistical Mechanical Entropy Production

It is important to go beyond averages to study further properties of
the entropy production. We derive the formula for the variable entropy
production in the line of thoughts of refs. 8 and 9. There, the variable
entropy production is identified with that part in the action functional for
the space-time distribution of the trajectories that breaks the time-reversal
invariance. In ref. 11 a fluctuation symmetry is derived for this entropy
production.

We first consider a reversible reference process Po, y

r b corresponding to
the dynamics

dqi=pi dt, i ¥ V

dpi=−
“U
“qi

(q) dt, i ¥ V0“V

dpi=−
“U
“qi

(q) dt − coi pi dt+=2c

bi
dWi(t), i ¥ “V

(3.9)
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We take oibi=b, -i ¥ “V, so that the process (3.9) is reversible, as may
be easily checked. As a consequence, we have Po, y

r b =Po, y

r b G where
(Gw)t=pw−t with w=((pt, qt), t ¥ [− y, y]) a trajectory and p reverses the
sign of the momenta. The stationary density is rb just like in (1.5).

Let Py
r denote the pathspace measure obtained from the dynamics

(1.8), started from initial states w−y=(q(−y), p(−y)) that are sampled
from the stationary probability density r. We compute the density of the
process Py

r with respect to Po, y

r b . Writing the Radon–Nikodym derivative in
the form

dPy
r(w)=e−Ar(w) dPo, y

r b (w)

the action functional Ar is simply found by application of a Girsanov
formula, see ref. 7:

− Ar(w)= C
i ¥ “V

1
2
5F

y

−y

(b − bi) pi(t) dpi(t)

+F
y

−y

(b − bi)
“U
“qi

(q(t)) pi(t) dt+F
y

−y

c(boi − bi) p2
i (t) dt6

+ln r(w−y) − ln rb(w−y)

The first integral appearing in Ar(w) is a stochastic Itô integral. The defi-
nition of this integral is itself not time-reversal invariant and the second
integral is clearly antisymmetric under time-reversal (because the momenta
change sign). The source of time-reversal breaking is Ry

r(w)=Arp(Gw)
− Ar(w) and thus equals

Ry
r(w)= C

i ¥ “V
(b − bi) F

y

−y

5pi(t) p dpi(t)+
“U
“qi

(q(t)) pi(t) dt6

+ln r(w−y) − ln r(wy) − ln rb(w−y)+ln rb(wy) (3.10)

where the first stochastic integral is meant in Stratonovich sense; it gives
p2

i (y)/2 − p2
i (−y)/2. After a number of straightforward manipulations

(3.10) becomes

Ry
r(w)= C

i ¥ “V
(b − bi) 51

p2
i (y)
2

−
p2

i (−y)
2

2+Ui(qi(y)) − Ui(qi(−y))

+F
y

−y

C
j: i ’ j

l ijFŒ(qi(t) − qj(t)) pi(t) dt6

− ln rb(w−y)+ln rb(wy)+ln r(w−y) − ln r(wy)
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In the above, all terms in b are seen to cancel when (1.5) is inserted. By
adding and subtracting the terms

F
y

−y

C
j: j ’ i

l ijFŒ(qi(t) − qj(t)) pj(t) dt, i ¥ “V

and using (3.3)–(3.5), we get the final result

Ry
r(w)=− C

i ¥ “V
bi
5Hi(wy) − Hi(w−y)+ C

j: i ’ j
Jy

ij(w)6+ln r(w−y) − ln r(wy)

= C
i ¥ “V

biJ
y
i (w)+ln r(w−y) − ln r(wy) (3.11)

We call this quantity the total variable entropy production. The first sum is
the variable change of entropy of the reservoirs. In case r=r−y would not
be stationary but some initial density, the analysis above would be essen-
tially unchanged:

Ry
r− y

(w)= C
i ¥ “V

biJ
y
i (w)+ln r−y(w−y) − ln ry(wy) (3.12)

but the two last terms now give the difference

[− ln ry(wy)] − [− ln r−y(w−y)]

obtaining its interpretation from what we mean by the statistics of the
states of the system. We have not assumed that the graph or V is large
(in the thermodynamic sense) and we have dealt with a Markov evolution
on the level of the microscopic states of the system without reference to
additional macroscopic quantities for the system. That makes it difficult to
introduce the Boltzmann entropy. If however we assume that the initial
preparation of the system has been done in some macrostate M and that
the states (p, q) were uniformly distributed in the phase space region
M − d [ M(p, q) [ M+d (with d some tolerance), then − ln r−y(p, q) 4

SB(M) where SB(M) is the Boltzmann entropy of macrostate M. Similarly,
if at time y, the system is found in macrostate MŒ and if the Markov
approximation was appropriate in the sense that ry corresponds to the
microcanonical ensemble with constraint MŒ − d [ M(p, q) [ MŒ+d, then
also − ln ry(p, q) 4 SB(MŒ). In that case, Ry

r− y
=DSenv+DSsys is the sum of

the change of entropy in the environment plus the change of entropy in the
system. In the case that the system is small or no standard entropy consid-
erations for it can be made, one may want to think of ln r(p, q) as an
information potential.
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3.2. Mean Entropy Production

Denote by Er− y
the expectation in the process Py

r− y
started from r−y.

We assume that at time y the evolved measure is described by a density ry.

Proposition 3.1. For every initial density r−y the mean entropy
production over the time interval [− y, y] is non-negative:

Er− y
[Ry

r− y
]= C

i ¥ “V
biEr− y

[Jy
i ]+S(ry) − S(r−y) \ 0 (3.13)

where S(r)=−> dp dq r(p, q) ln r(p, q) is the Shannon entropy of the
density r. In particular, the steady state currents satisfy the inequality

C
i ¥ “V

bi C
j: j ’ i

OJjiP \ 0 (3.14)

The inequality (3.14) implies that the steady state entropy production
(3.8) is always non-negative. For simpler graphs (basically, one-dimen-
sional) this was already achieved in refs. 2 and 6. We will discuss later when
the steady state entropy production is strictly positive, see Section 3.3
answering Question 3.

Proof of Proposition 3.1. The proof is just repeating the arguments
of ref. 8. By definition,

Er− y
[e−Ry

r − y]=1

and by convexity of the exponential, we get

Er− y
[Ry

r− y
] \ 0

This expectation can be done from (3.12). The rest follows from inspecting
(3.6)–(3.8). L

Suppose that the density at time t \ − y is rt when started from r−y.
We can write

Er− y
[Ry

r− y
]=F

y

−y

Ṙy
r− y

(t) dt

with, similar to (3.7)–(3.11),

Ṙy
r− y

(t) — c C
i ¥ “V

bi
5F dp dq p2

i rt(p, q) −
1
bi

6+
d
dt

S(rt) (3.15)
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The previous considerations thus identify the mean entropy production rate
at time t (in the transient regime) with Ṙy

r− y
(t).

In the following proposition we derive another formula for it, which is
explicitly positive. We define the functional

Ṡ(r) — C
i ¥ “V

c

bi
F dp dq 5e−bi p2

i /2

`r

“

“pi
(ebi p2

i /2r)6
2

(3.16)

on smooth densities r.

Proposition 3.2.

Ṙy
r− y

(t)=Ṡ(rt) (3.17)

Proof. We start by evaluating the time derivative of the Shannon
entropy:

dS
dt

(r)=−F dp dq
dr

dt
ln r=−F dp dq (L+r) ln r (3.18)

where L+ is the forward generator (the adjoint of L with respect to
dp dq). We split it into the Hamiltonian and the reservoir parts, L+=
L+

H+L+
R , with

L+
Hr=−p · Nqr+NqU · Npr (3.19)

and

L+
R r=c C

i ¥ “V

5 “

“pi
(pir)+

1
bi

“
2r

“p2
i

6= C
i ¥ “V

c

bi

“Xi

“pi
(3.20)

where we made use of the shorthand Xi — e−bi p2
i /2 “

“pi
(ebi p2

i /2r). Using the
invariance of the Shannon entropy under Hamiltonian flows, we get

dS
dt

(r)=−F dp dq (L+
R r) ln r= C

i ¥ “V

c

bi
F dp dq Xi

“

“pi
ln r

= C
i ¥ “V

c

bi
F dp dq Xi

1Xi

r
− bi pi

2 (3.21)
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Minus the second term reads

c C
i ¥ “V

F dp dq piXi=c C
i ¥ “V

F dp dq pi
1 “r

“pi
+bi pir2

=c C
i ¥ “V

bi F dp dq r 1p2
i −

1
bi

2 (3.22)

Substituting (3.22) into (3.21), we immediately obtain the desired iden-
tity. L

We end here with some second look at the functional Ṡ(r) of (3.16).
Clearly, it offers no advance to try to compute the steady state entropy
production from it if we do not know the stationary density. Moreover, it
gives as such no hint about the variable entropy production which is a
function on the trajectories in phase space and it is hopelessly restricted
to the Markov case. This contrasts with the approach of Section 3.1.
Nevertheless, as a functional on densities, it invites checking the so called
minimum entropy production principle. However, a prime feature of the
functional Ṡ is that it does not depend on the interaction potential. So we
can minimize it easily and there are many solutions (Ṡ is not strictly
convex). This makes that the minimum entropy production is not applic-
able here to characterize, even approximately, the stationary density. Note
that, if both the stationary distribution and the minimizer of the entropy
production functional are unique, they indeed coincide up to the linear
order when expanded around a reversible dynamics, see ref. 9, for instance.

3.3. Strict Positivity of Mean Entropy Production

In this section we formulate sufficient conditions on the model under
which the steady state produces entropy with non-zero rate. The conditions
are not necessary and they can often be relaxed as we demonstrate on a
specific example in the next section. This provides the answer to Question 3.

Theorem 3.3. If the interaction potential F has a second derivative
that is m-non-degenerate for all m [ n(G, “V), and if some reservoir tem-
peratures are not equal, then the steady state entropy production is strictly
positive.

Proof. We see from (3.2) that if r is a smooth stationary density and
if its steady state entropy production Ṡ(r)=0, then

“

“pi
(ebi p2

i /2r)=0, i ¥ “V
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This is equivalent with (1.7). Moreover, it also implies that L+
R r=0, see (3.19).

Hence, r is invariant under the Hamiltonian flow: L+
Hr=L+r−L+

R r=0.
The statement now immediately follows from Theorem 2.4. L

Theorem 3.3 is not entirely satisfactory. It is true, that there exist
interesting classes of graphs with n(G, “V)=1, see Section 2.3, for which
the condition of the theorem just boils down to the natural condition
F – const. Yet, the theorem cannot be applied when the number of neigh-
bors is large, when there are many loops and the potential F is not suffi-
ciently non-degenerate. For example, if G is a part of 2-dimensional lattice,
we have no general (=valid independently on the choice of the boundary)
result in the case that F is a polynomial of order lower than 4. We are
however convinced that for Theorem 3.3, the assumption of non-degeneracy
is most often stronger than needed. This will be illustrated in Section 3.4.

3.4. Non-Unique Stationary Measure

We still need to answer Question 2 and this takes us back to the
example discussed in Section 2.4; we refer again to Fig. 1. We keep the
same notation as there.

We first observe that

“

“p1
[ebp2

1/2rc]=0,
“

“p2
[ebp2

2/2rc]=0 (3.23)

This is equivalent to zero entropy production, Ṡ(rc)=0, and it also implies
L+

R rc=0. Combined with {Wc, H}=0, we conclude that the measures are
stationary under the heat bath dynamics: L+rc=0. It is easy to see that
not only the entropy production but all local currents are zero, for
instance,

F dp dq J13(p, q) rc(p, q)=
l

2
F dp dq rc(p, q) (p1+p3)(q1 − q3)=0

(3.24)

as well as OpiqjPrc
=0 for all i, j=1, 2, 3, 4. Another observation is that

the kinetic temperatures at different sites are not equal, in general. Indeed,
a simple calculation yields

Op2
3Prc

=Op2
4Prc

=
1+c
1+2c

b−1 (3.25)

while Op2
1Prc

=Op2
2Prc

=b−1.
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Assume now that the temperatures of both reservoirs are different. We
sketch how to prove in this case that Ṡ(r)=0 and L+r=0 imply that
b1=b2. We write again r=exp(−W)/Z and introduce, for convenience,
W1=W − b1H and W2=W − b2H. Then the condition Ṡ(r)=0 is equiva-
lent to

“W1

“p1
=0,

“W2

“p2
=0 (3.26)

Similarly, the stationarity condition L+r=0 is equivalent to {W, H}=0
which implies the equations

{W1, H}=0, {W2, H}=0 (3.27)

Differentiating (3.27) with respect to p1, respectively p2, and using (3.26),
we get

“W1

“q1
=0,

“W2

“q2
=0 (3.28)

Taking now the derivatives of (3.27) with respect to q1 and q2, we obtain
the equations

“W1

“p3
+

“W1

“p4
=0,

“W2

“p3
+

“W2

“p4
=0 (3.29)

which are mutually in contradiction unless b1=b2. This shows that the
assumption of non-degeneracy as stated in Theorem 3.3 is sometimes too
strong. To apply it, we would need here n=2 but Fœ is constant.

3.5. Local Heat Currents

We address here Question 4. A first answer concerning the direction of
the heat currents is obtained from the positivity of the entropy production.
Suppose for example that the boundary “V=D1 2 D2 splits into two non-
empty disjoint regions with bi=b1 for i ¥ D1 and bi=b2 for i ¥ D2. Then,
one has

Y1= C
i ¥ D1

5Op2
i P−

1
b1

6=−Y2=− C
i ¥ D2

5Op2
i P−

1
b2

6

which, for the steady state entropy production give

(b1 − b2) Y1 \ 0 (3.30)
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If therefore b1 \ b2 (D1 is colder than D2), then Y1 \ 0 \ Y2 or the heat
flows effectively from D2 to D1. All these inequalities become strict when
the entropy production is strictly positive as discussed in Section 3.3.

Suppose now that the steady entropy production equals zero. We
know that under certain conditions on the potential, as discussed in Sec-
tion 3.3, we must have that all reservoir temperatures are equal to some b

and that the density rb is the unique stationary density. Here we show,
without further explicit conditions on the potential but assuming unique-
ness of the stationary density, that at any event, zero entropy production
implies that all local heat currents are zero. We actually show something
stronger: that the stationary density is invariant under sign reversals of all
the momenta, r(p, q)=rp(p, q). This will follow from the time-reversal
invariance of the steady state process, Py

r=Py
rpG which is itself a conse-

quence of

Theorem 3.4. Suppose that r is a stationary density for which
Ṡ(r)=0. Then the generator satisfies L=pLgp in L2(r).

Corollary 3.5. Suppose that r is the unique stationary density and
that Ṡ(r)=0. Then, r=rp and as a result, for all nearest neighbors
i, j ¥ V,

F dp dq r(p, q) Jij(q, p)=F dp dq r(p, q) 1
2 l ij(pi+pj) FŒ(qi − qj)=0

(3.31)

Proof of Theorem 3.4. We start by rewriting

LR f(p, q)=c C
i ¥ “V

1
bi

ebi p2
i /2 1 “

“pi
e−bi p2

i /2 “f
“pi

2

so that it follows from Ṡ(r)=0 that

F g(p, q) LR f(p, q) r(p, q) dp dq=−c C
i ¥ “V

1
bi

F
“g
“pi

“f
“pi

r(p, q) dp dq

which is symmetric under exchanging f with g. Moreover, LRp=pLR.
For the Hamiltonian flow, we have, by dynamical reversibility,

pLHp=−LH and again, since Ṡ(r)=0 combined with L+r=0 imply
that L+

Hr=0, we also have Lg
H=L+

H=−LH. L

Proof of Corollary 3.5. The symmetry L=pLgp in L2(r) of the
generator implies that also rp is stationary for the heat bath dynamics.
Since it is assumed unique, we conclude that r=rp. L
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Note that L=pLgp in L2(r) implies that Lrp/r=0. An additional
ergodicity requirement (that all ergodic components are p-invariant) thus
makes r=rp and can thus replace the uniqueness assumption of Corol-
lary 3.5.

The corollary further shows that zero steady entropy production
implies that the stationary density is invariant under reflection of the
momenta. For our finite graphs, this property is certainly not enough to
conclude that r is a convex combination of rb ’s, Gibbs measures at inverse
temperature b, see Section 2.4 but, paradoxically, it may be sufficient for
infinite graphs, see ref. 4.

4. GETTING WORK DONE

One of the prime applications of maintaining heat gradients is to get
work done. This can be modeled after the scheme of Section 1.2 by insert-
ing external forces Fi=Fi(q) at the i ¥ V0“V. We then have the forced
heat bath dynamics

dqi=pi dt, i ¥ V

dpi=−
“U
“qi

(q) dt+Fi dt, i ¥ V0“V

dpi=−
“U
“qi

(q) dt − cpi+=2c

bi
dWi(t), i ¥ “V

(4.1)

We will again assume the existence and smoothness properties of the
process with stationary density r.

The work done by the system over the time-interval [− y, y] is

Wy
o — − C

i ¥ V0“V
F

y

−y

Fi pi dt (4.2)

We will show that for an arbitrary b > 0,

OWy
oP [ C

i ¥ “V

1bi

b
− 12 OJy

iP (4.3)

Fixing an arbitrary boundary site v ¥ “V and taking b=bv in (4.3) yields

OWy
oP [ C

i ¥ “V

bi − bv

bv
OJy

iP (4.4)
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In fact, (4.3) and (4.4) are equivalent (as can be seen by eliminating OJy
vP in

(4.3) via (4.6)).
In the case where the boundary “V={v, w} contains just two sites

(system coupled to two heat reservoirs) and we write bv — 1/Tv, bw — 1/Tw,
then (4.4) reads as

OWy
oP [ 1Tv

Tw
− 12 OJy

wP (4.5)

which gives an upper bound on the work W — OWy
oP that can be extracted

from the engine: If Thot — Tw > Tv — Tcold and Qhot — −OJy
wP > 0 (energy

input at the hot reservoir), we get as maximal efficiency that of the Carnot
cycle:

W

Qhot
[ 1 −

Tcold

Thot

For a heat pump, when now Thot=Tv > Tw=Tcold and Qcold=−OJy
wP > 0

(energy input at the cold reservoir), we get from (4.5) a lower bound on the
work WŒ=−OWy

oP that needs to be delivered on the system:

WŒ

Qcold
\

Thot

Tcold
− 1

Proof of (4.3). The first remark is that the global energy conserva-
tion relation (3.2) in the steady state must be changed to

C
i ¥ “V

OJy
iP+OWy

oP=0 (4.6)

The inequality (4.3) is then obtained once we show that

C
i ¥ “V

biOJy
iP \ 0 (4.7)

We only need to replace the right-hand side in (4.7) by b times the left-
hand side of (4.6) for arbitrary b > 0.

It remains to show that (4.7) is true but that follows from the same
analysis as in Section 3.1 that finally lead to (3.14). In other words, the
expression for the total entropy production is not affected by the presence
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of the forces Fi. One way to see this via some regularization is by consid-
ering the following modification of (4.1):

dqi=pi dt, i ¥ V

dpi=−
“U
“qi

(q) dt+aFi(q) dt − oiepi dt+(4e)1/4 dWt, i ¥ V0“V

dpi=−
“U
“qi

(q) dt − coi pi+=2c

bi
dWi(t), i ¥ “V

(4.8)

for e > 0. A first choice is taking a=0, for i ¥ “V: oibi=1 and for
i ¥ V0“V: oi `e=1. For this choice, the process is reversible exactly like
in (3.9) with reversible measure rb=1. A second choice is taking a=oi=1
for all i ¥ V which coincides with our original dynamics (4.1) when we let
e a 0. Just like in Section 3.1 we can compute the density of the process
Py, 2

r , corresponding to our second choice, with respect to the process Py, 1
r1

of our first choice:

dPy, 2
r (w)=e−Ae

r(w) dPy, 1
r1 (w)

where A e
r is given by a Girsanov formula. The source of time-reversal

breaking is now Ry, e
r (w) — A e

rp(Gw) − A e
r(w) and one can easily check that

it coincides with Ry
r(w) as given in (3.11) up to terms of order `e for each

history w. We now let e a 0 and we get R0, y
r =Ry

r. The rest is again an
application of Proposition 3.1, inequality (3.14). L
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